Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Hyunseon-
dc.contributor.authorKo, Gwan-Jin-
dc.contributor.authorSong, Sangmin-
dc.contributor.authorLee, Joong Hoon-
dc.contributor.authorSeo, Youngmin-
dc.contributor.authorHan, Sungkeun-
dc.contributor.authorEom, Chan-Hwi-
dc.contributor.authorKim, Hyewon-
dc.contributor.authorKim, Seongsoo-
dc.contributor.authorLee, Kang-Sik-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorKim, Hojun-
dc.contributor.authorMoon, Si-Eun-
dc.contributor.authorLee, Kyungwoo-
dc.contributor.authorKo, Seung Hwan-
dc.contributor.authorHwang, Suk-Won-
dc.contributor.authorJeon, Hojeong-
dc.date.accessioned2025-07-18T02:30:33Z-
dc.date.available2025-07-18T02:30:33Z-
dc.date.created2025-07-18-
dc.date.issued2025-06-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/152757-
dc.description.abstractStable and reliable operation of implantable electronics must ensure both high-quality electrical performance and chronic biocompatibility. Here, immune-stealth implantable electronics fabricated by multiphoton ablation lithography are introduced. The cell-repellent interface, consisting of micro-grooves and nano-islands, can be created by laser-assisted topography patterning on a thin film substrate. This patterned surface demonstrates a 20-fold increase in cell-repellent effectiveness against immune cells such as macrophages and fibroblasts due to disturbance of focal adhesion. Furthermore, the cell-repellent interface can also be patterned on the sub-micron electrode layer without compromising its electrical and electrochemical performance. When the electrocardiogram (ECG) sensor applying the cell-repellent interface is implanted into a rat subcutaneous tissue, inflammation and fibrotic reactions are effectively suppressed for 6 weeks. Consequently, stable ECG readings with clear PQRST waveforms are obtained in real-time for 4 weeks, suggesting its potential to enhance chronic biocompatibility of implantable electronics.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleTopographical Patterning of Cell-Repellent Interfaces for Immune-Stealth Implantable Electronics via Multiphoton Ablation Lithography-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202506482-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science-
dc.citation.titleAdvanced Science-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusMACROPHAGES-
dc.subject.keywordPlusACTIVATION-
dc.subject.keywordPlusNANOSCALE-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusSYMMETRY-
dc.subject.keywordAuthorchronic biointerface-
dc.subject.keywordAuthorimplantable electronics-
dc.subject.keywordAuthorlaser processing-
dc.subject.keywordAuthormultiscale topography-
dc.subject.keywordAuthortopographical cue-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE