Dual-Selective Terahertz-Nanodisc Metasurfaces for Exploring Neurotransmitter Dynamics beyond Spectral Limitations

Authors
Kim, TaeyeonLee, Yeon KyungRoh, YeeunPark, JaehunRyu, Yong-SangSong, Hyun SeokSeo, Minah
Issue Date
2025-06
Publisher
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Citation
Advanced Materials
Abstract
The rapid growth of nanotechnology and spectroscopic techniques has accelerated the development of biosensors with high sensitivity and selectivity. Nanoscale metasurfaces can potentially overcome the limitations of conventional optical methods, such as low responsivity and molecular specificity. One promising approach for analyzing subtle biochemical changes that occur in complex biological phenomena is to use terahertz metasurfaces. Here, the aim is to develop a dual-selective terahertz nanodisc metasurface that enabled precise monitoring of neurotransmitter dynamics in a biomimetic environment. Utilizing functionalized terahertz metasurfaces with nanodisc that mimic biosensory receptors, a biosensor selective for both molecular type and resonant frequency is developed. The sensing platform ensures significantly enhanced sensitivity and specificity by recognizing the intermolecular changes associated with serotonin-nanodisc binding and aqueous surrounding effects. The proposed biosensor can potentially provide an efficient tool for studying complex biochemical interactions, and find application in biomedical diagnostics and neuroscience research.
Keywords
5-HT7 RECEPTOR; SPECTROSCOPY; biosensor; GPCRs; metasurface; molecular dynamics; nanodsic; neurotransmitter sensing; receptor-ligand interaction; terahertz time-domain spectroscopy
ISSN
0935-9648
URI
https://pubs.kist.re.kr/handle/201004/152772
DOI
10.1002/adma.202504858
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE