Percolative Network-Based Flexible Transparent Conductive MXene-Nickel Microfiber Film for Electromagnetic Interference Shielding
- Authors
- Kiyong Kim; Jahyun Kim; Freddy Baltazar Iniguez; Hojae Kim; Lee, Min Wook; Jin-Seo Noh; Seongpil An
- Issue Date
- 2025-08
- Publisher
- American Chemical Society
- Citation
- ACS Nano
- Abstract
- As advanced optoelectronics continue to integrate, electromagnetic interference (EMI) shielding technologies have been extensively developed to meet multifunctional requirements, including ultrathin, flexible, and transparent properties. In this study, we develop a transparent EMI shielding film by embedding Ti3C2Tx MXene particles within one-dimensional (1D) metallic fiber structures. This 1D structure facilitates the formation of a percolative network, enabling high EMI shielding performance while maintaining significant visible light transmission. To quantitatively analyze the percolation network-based optoelectronic properties, a rigorous percolation model was employed to investigate the formation of percolative conduction. As a result, the EMI shielding performance reached a shielding effectiveness (SE) value of 45 dB in the X-band (8.2?12.4 GHz) with 64% transmittance, while an SE value of 39 dB was achieved with a transmittance of 86%. Furthermore, the shielding performance remained stable even after 5000 bending cycles, demonstrating sustainable mechanical stability. This multifunctional fiber composite offers valuable insights for advanced optoelectronic applications, providing industrially feasible fabrication methods with good optoelectronic performance.
- ISSN
- 1936-0851
- URI
- https://pubs.kist.re.kr/handle/201004/153094
- DOI
- 10.1021/acsnano.5c09918
- Appears in Collections:
- KIST Article > Others
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.