Full metadata record

DC Field Value Language
dc.contributor.authorKim, Sanghun-
dc.contributor.authorYoon, Yeomin-
dc.contributor.authorPark, Chanhyuk-
dc.contributor.authorChoi, Jun Woo-
dc.contributor.authorJang, Jeong Woo-
dc.contributor.authorKim, Hoyeon-
dc.contributor.authorKang, Hyung-Won-
dc.contributor.authorKim, Dong Hun-
dc.date.accessioned2025-09-17T02:02:46Z-
dc.date.available2025-09-17T02:02:46Z-
dc.date.created2025-09-16-
dc.date.issued2025-09-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153172-
dc.description.abstractThe challenge of directly depositing highly crystalline thin films onto flexible substrates because of their low thermal stability has motivated the exploration of thin-film transfer techniques. In this study, we report on the thin-film transfer process of sputter-grown BiFeO3/CoFe2O4 bilayer thin films using a sacrificial alpha-MoO3 layer on SrTiO3(001) substrates. A significant cation diffusion into the alpha-MoO3 layer leading to the formation of secondary phases in CoFe2O4 films was effectively suppressed by lowering the deposition temperature. However, the formation of secondary phases could not be avoided in crystallized BiFeO3 thin films. The large leakage current in the BiFeO3 thin film dramatically decreased upon annealing; however, a critical temperature existed where alpha-MoO3 reacted with SrTiO3, thereby resulting in the collapse of its two-dimensional structure. The CoFe2O4 thin films not only prevented diffusion but also significantly reduced the leakage current in the BiFeO3/CoFe2O4 bilayer. Bilayer stacks transferred onto flexible substrates by rupturing the interconnection in the alpha-MoO3 layer maintained their magnetic anisotropy and exhibited improved leakage current characteristics.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleMagnetic and Leakage Current Characteristics of Transferred CoFe2O4/BiFeO3 Thin Films-
dc.typeArticle-
dc.identifier.doi10.1021/acsanm.5c02961-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Nano Materials, v.8, no.36, pp.17483 - 17492-
dc.citation.titleACS Applied Nano Materials-
dc.citation.volume8-
dc.citation.number36-
dc.citation.startPage17483-
dc.citation.endPage17492-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusDER-WAALS EPITAXY-
dc.subject.keywordPlusINTEGRATION-
dc.subject.keywordAuthorthin-film transfer-
dc.subject.keywordAuthortwo-dimensional alpha-MoO3 layers-
dc.subject.keywordAuthorBiFeO3 thin films-
dc.subject.keywordAuthorCoFe2O4 thin films-
dc.subject.keywordAuthormechanical exfoliation-
dc.subject.keywordAuthor2-2 type nanocompositethin films-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE