Full metadata record

DC Field Value Language
dc.contributor.authorDharmaiah, Peyala-
dc.contributor.authorPark, Gwang Min-
dc.contributor.authorHeo, Minsu-
dc.contributor.authorJu, Jaebaek-
dc.contributor.authorKim, Hyun-Sik-
dc.contributor.authorPark, Hea Jung-
dc.contributor.authorWon, Sung Ok-
dc.contributor.authorKim, Tae Heon-
dc.contributor.authorKim, Seong Keun-
dc.contributor.authorKim, Jin-Sang-
dc.contributor.authorBaek, Seung-Hyub-
dc.date.accessioned2025-10-01T11:02:28Z-
dc.date.available2025-10-01T11:02:28Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153304-
dc.description.abstractTwo-dimensional (2D) layered Zintl compounds have emerged as promising candidates for thermoelectric applications due to their favorable electronic structures, efficient charge transport pathways, and loosely bound cations. In this study, we engineered 2D-layered structures in polycrystalline ZnSb through alkali metal (A = Li, Na, K) alloying, inducing a bonding transition from sp(3) to sp(2) hybridization that promotes the formation of layered structures. Structural analysis confirmed the formation of layered phases, with increasing texturing fractions from Li to K. Electrical transport measurements revealed that LiZnSb exhibited high electrical conductivity (similar to 6561 S cm(-1)) due to a high carrier concentration, while NaZnSb showed moderate conductivity (similar to 213 S cm(-1)) with a carrier concentration close to the theoretical value (7.38 x10(18) cm(-3)). In contrast, KZnSb demonstrated extremely low conductivity, hindering reliable carrier concentration analysis. As a result, NaZnSb achieved a maximum ZT of 0.079 at 375 K, which is significantly higher than that of LiZnSb. The single parabolic band (SPB) model suggests that NaZnSb may be further optimized through extrinsic doping at the Zn site, whereas LiZnSb remains limited by intrinsic cation deficiencies. These results demonstrate that alkali metalinduced bonding transitions offer a viable strategy for engineering 2D structures in Zintl compounds to enhance thermoelectric performance.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleDevelopment of two-dimensional layered ZnSb-based thermoelectric materials via alkali metal alloying-
dc.typeArticle-
dc.identifier.doi10.1016/j.jallcom.2025.183309-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.1039-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume1039-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid001567928700001-
dc.identifier.scopusid2-s2.0-105014512294-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordAuthorThermoelectric materials-
dc.subject.keywordAuthorZintl phase-
dc.subject.keywordAuthorAlkali metal-
dc.subject.keywordAuthorCarrier concentration optimization-
dc.subject.keywordAuthorLattice thermal conductivity-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE