Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Jihoon-
dc.contributor.authorJang, Myungsu-
dc.contributor.authorPark, Gwang Min-
dc.contributor.authorKim, Minseok-
dc.contributor.authorKim, Jongseo-
dc.contributor.authorYe, Seungwan-
dc.contributor.authorPark, Yongjoo-
dc.contributor.authorBaek, Seung-Hyub-
dc.contributor.authorKang, Jun-Yun-
dc.contributor.authorKim, Seong Keun-
dc.date.accessioned2025-10-01T11:02:41Z-
dc.date.available2025-10-01T11:02:41Z-
dc.date.created2025-09-30-
dc.date.issued2025-09-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/153305-
dc.description.abstractStabilizing metastable TiO2 phases in thin films remains a significant challenge. This paper demonstrates a strain-driven approach for selectively stabilizing the metastable phases of orthorhombic TiO2-II and rutile using (111)-oriented face-centered cubic (FCC) metal substrates via low-temperature atomic layer deposition. Epitaxial FCC metal substrates, including Ir and Pt, exhibit a strong preferential (111) orientation and promote the formation of TiO2-II with a preferential (200) orientation through favorable lattice matching. In contrast, TiO2 grown on (111)-textured polycrystalline FCC metals crystallizes into rutile with a preferential (110) orientation despite identical growth conditions, which is attributed to strain relaxation arising from the random in-plane orientations of FCC metals. Compared to the stable anatase phase, TiO2-II films exhibit higher density (4.45-4.51 g cm-3), higher refractive indices, and higher dielectric constants (approximate to 75-77). These findings reveal that in-plane strain and lattice matching can be strategically utilized to engineer metastable TiO2 phases, offering a new approach for the phase-selective growth of functional oxide films at low temperatures.-
dc.languageEnglish-
dc.publisherWiley - V C H Verlag GmbbH & Co.-
dc.titleStrain-Driven Selective Stabilization of Metastable TiO2 Phases-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202505427-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSmall-
dc.citation.titleSmall-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-105016513624-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusATOMIC LAYER DEPOSITION-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusRUTILE-
dc.subject.keywordPlusCAPACITORS-
dc.subject.keywordPlusTHICKNESS-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusRU-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthormetastable phase-
dc.subject.keywordAuthorrutile-
dc.subject.keywordAuthorTiO2-II-
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE