Dielectrophoretic force-induced wrinkling of graphene oxide: Enhancing electrical conductivity and expanding biosensing applications

Authors
Park, YejinKim, HyejinSong, JaeyoonKim, SehyeonLee, Byung ChulKim, Jinsik
Issue Date
2024-02
Publisher
Pergamon Press Ltd.
Citation
Biosensors and Bioelectronics, v.246
Abstract
Graphene oxide (GO) has many advantages, making it suitable for various applications. However, it has low electrical conductivity, restricting its applicability to electrochemical biosensors. This study used dielectrophoretic (DEP) force to control the movement and deformation of GO nanosheets to achieve high electrical conductivity without the chemical reduction of oxygen functional groups. Subjecting the DEP force to GO nanosheets induced physical deformation leading to the formation of wrinkled structures. A computational simulation was performed to set an appropriate electrical condition for operating a positive DEP force effect of at least 1019 v2/m3, and the interdigitated microelectrode structure was selected. The resulting wrinkled GO exhibited significantly improved electrical conductivity, reaching 21.721 μS while preserving the essential oxygen functional groups. Furthermore, a biosensor was fabricated using wrinkled GO deposited via DEP force. The biosensor demonstrated superior sensitivity, exhibiting a 9.6-fold enhancement compared with reduced GO (rGO) biosensors, as demonstrated through biological experiments targeting inducible nitric oxide synthase. This study highlights the potential of using DEP force to enhance electrical conductivity in GO-based biosensing applications, opening new avenues for high-performance diagnostics.
Keywords
NANOSTRUCTURES; REDUCTION; BIOMARKER; SYNTHASE; Dielectrophoretic force; Wrinkles; Graphene oxide; Chemical reduction; Electrical conductivity; Biosensor
ISSN
0956-5663
URI
https://pubs.kist.re.kr/handle/201004/79662
DOI
10.1016/j.bios.2023.115867
Appears in Collections:
KIST Article > 2024
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE