Highly Reliable Threshold Switching Characteristics of Surface-Modulated Diffusive Memristors Immune to Atmospheric Changes

Authors
Song, Young GeunKim, Ji EunKwon, Jae UkChun, Suk YeopKeunho SohNahm, SahnKang, Chong-YunYoon, Jung Ho
Issue Date
2023-02
Publisher
American Chemical Society
Citation
ACS Applied Materials & Interfaces, v.15, no.4, pp.5495 - 5503
Abstract
Active cation-based diffusive memristors featuring essentially volatile threshold switching have been proposed for novel applications, such as a selector in a one-selector-and-one-resistor structure and signal generators in neuromorphic computing. However, the high variability of the switching behavior, which results from the high electroforming voltage, external environmental conditions, and transition to the non-volatile switching mode in a high-current range, is considered a major impediment to such applications. Herein, for the first time, we developed a highly reliable threshold switching device immune to atmospheric changes based on an ultraviolet-ozone (UVO)-treated diffusive memristor consisting of Ag and SiO2 nanorods (NRs). UVO treatment forms a stable water reservoir on the surface of SiO2 NRs, facilitating the redox reaction and ion migration of Ag. Consequently, diffusive memristors possess reliable switching characteristics, including electroforming-free, repeatable, and consistent switching with resistance to changes in ambient conditions and compliance levels during operation. We demonstrated that our approach is suitable for various metal oxides and can be used in numerous applications.
Keywords
DEVICES; SELECTOR; MEMORIES; diffusive memristors; UVO treatment; nanorods; artificial neurons
ISSN
1944-8244
URI
https://pubs.kist.re.kr/handle/201004/114019
DOI
10.1021/acsami.2c21019
Appears in Collections:
KIST Article > 2023
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE