Polarity-tunable spin transport in all-oxide multiferroic tunnel junctions
- Authors
- Soni, Rohit; Petraru, Adrian; Nair, Harikrishnan S.; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Kohlstedt, Hermann
- Issue Date
- 2016-05
- Publisher
- ROYAL SOC CHEMISTRY
- Citation
- NANOSCALE, v.8, no.20, pp.10799 - 10805
- Abstract
- A multiferroic tunnel junction (MFTJ) promisingly offers multinary memory states in response to electric- and magnetic-fields, referring to tunneling electroresistance (TER) and tunneling magnetoresistance (TMR), respectively. In spite of recent progress, a substantial number of questions concerning the understanding of these two intertwined phenomena still remain open, e.g. the role of microstructural/chemical asymmetry at the interfaces of the junction and the effect of an electrode material on the MFTJ properties. In this regard, we look into the multiferroic effect of all-complex-oxide MFTJ (La0.7Sr0.3MnO3/Pb (Zr0.3Ti0.7)O-3/La0.7Sr0.3MnO3). The results reveal apparent TER-TMR interplay-captured by the reversible electric-field control of the TMR effect. Finally, microscopy analysis on the MFTJ revealed that the observed TER-TMR interplay is perhaps mediated by microstructural and chemical asymmetry in our nominally symmetric MFTJ.
- Keywords
- ELECTRORESISTANCE; MAGNETORESISTANCE; MECHANISMS; ELECTRORESISTANCE; MAGNETORESISTANCE; MECHANISMS
- ISSN
- 2040-3364
- URI
- https://pubs.kist.re.kr/handle/201004/124143
- DOI
- 10.1039/c6nr01277a
- Appears in Collections:
- KIST Article > 2016
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.