Fatigue-Free, Electrically Reliable Copper Electrode with Nanohole Array
- Authors
- Kim, Byoung-Joon; Cho, Yigil; Jung, Min-Suk; Shin, Hae-A-Seul; Moon, Myoung-Woon; Han, Heung Nam; Nam, Ki Tae; Joo, Young-Chang; Choi, In-Suk
- Issue Date
- 2012-11-05
- Publisher
- WILEY-V C H VERLAG GMBH
- Citation
- SMALL, v.8, no.21, pp.3300 - 3306
- Abstract
- Design and fabrication of reliable electrodes is one of the most important challenges in flexible devices, which undergo repeated deformation. In conventional approaches, mechanical and electrical properties of continuous metal films degrade gradually because of the fatigue damage. The designed incorporation of nanoholes into Cu electrodes can enhance the reliability. In this study, the electrode shows extremely low electrical resistance change during bending fatigue because the nanoholes suppress crack initiation by preventing protrusion formation and damage propagation by crack tip blunting. This concept provides a key guideline for developing fatigue-free flexible electrodes.
- Keywords
- FILMS; DEFORMATION; MICROMECHANICS; TRANSPARENT; NANOWIRES; PAPER; FILMS; DEFORMATION; MICROMECHANICS; TRANSPARENT; NANOWIRES; PAPER; bending; conductivity; copper; electrodes; nanostructures
- ISSN
- 1613-6810
- URI
- https://pubs.kist.re.kr/handle/201004/128660
- DOI
- 10.1002/smll.201200674
- Appears in Collections:
- KIST Article > 2012
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.