Diversity-oriented fluorescence library approaches for probe discovery and development

Authors
Vendrell, MarcLee, Jun-SeokChang, Young-Tae
Issue Date
2010-06
Publisher
ELSEVIER SCI LTD
Citation
CURRENT OPINION IN CHEMICAL BIOLOGY, v.14, no.3, pp.383 - 389
Abstract
Diversity-oriented fluorescence library approaches have significantly accelerated the development of new sensors. By making use of combinatorial chemistry and high-throughput screening, they can circumvent our limitations in designing probes for particular recognition processes. Combinatorial chemists have proved how to derivatize fluorogenic scaffolds, tune their photophysical spectra and adjust their properties (from cell permeability to quantum yields) to generate libraries of potential sensors. Several platforms (in vitro assays, cell-based imaging) have also been optimized to screen these libraries in a high-throughput manner, and with the recent progress in image acquisition and analysis, their scope has been expanded toward more diverse and demanding biological systems. Supported by successful examples of fluorescent sensors for biomolecules, proteins, or even phenotypes, this review (together with a video abstract) stresses the important role that diversity-oriented approaches will continue to play in probe development in the near future.
Keywords
SOLID-PHASE SYNTHESIS; COMBINATORIAL DISCOVERY; PARALLEL SYNTHESIS; IMAGING PROBES; SENSORS; DYES; FLUOROPHORES; DERIVATIVES; CHEMOSENSORS; SOLID-PHASE SYNTHESIS; COMBINATORIAL DISCOVERY; PARALLEL SYNTHESIS; IMAGING PROBES; SENSORS; DYES; FLUOROPHORES; DERIVATIVES; CHEMOSENSORS; Chemical Biology; Combinatorial Chemistry; Fluorescence probe
ISSN
1367-5931
URI
https://pubs.kist.re.kr/handle/201004/131433
DOI
10.1016/j.cbpa.2010.02.020
Appears in Collections:
KIST Article > 2010
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE