Effective silicon oxide formation on silica-on-silicon platforms for optical hybrid integration
- Authors
- Kim, TH; Sung, HK; Choi, JW; Yoon, KH
- Issue Date
- 2003-04
- Publisher
- WILEY
- Citation
- ETRI JOURNAL, v.25, no.2, pp.73 - 80
- Abstract
- This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.
- Keywords
- WAVE-GUIDE; PLC PLATFORM; MODULE; WAVE-GUIDE; PLC PLATFORM; MODULE
- ISSN
- 1225-6463
- URI
- https://pubs.kist.re.kr/handle/201004/138716
- DOI
- 10.4218/etrij.03.0102.0208
- Appears in Collections:
- KIST Article > 2003
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.