Effect of surface kinetics on the step coverage during chemical vapor deposition
- Authors
- Hwang, GS; Moon, SH; Nam, SW; Shin, CB
- Issue Date
- 1999-06
- Publisher
- MATERIALS RESEARCH SOCIETY
- Citation
- JOURNAL OF MATERIALS RESEARCH, v.14, no.6, pp.2377 - 2380
- Abstract
- Profile evolution simulations during chemical vapor deposition based on a 2D continuum model reveal that the type of surface kinetics plays an important role in determining step coverage of films deposited in high aspect ratio trenches and vias. Linear surface kinetics, resulting from an adsorption rate limited process, is found to cause difficulty in bringing about conformal step coverage in deep narrow trenches without reducing the growth rate considerably, Under such condition, void-free filling cannot be achieved while maintaining a growth rate acceptable to integrated circuit (IC) manufacturing. The numerical study also suggests that the high tendency of the precursor for chemical equilibrium on a surface, resulting in nonlinear kinetics by a surface reaction limited process, is crucial to achieve a uniform step coverage as typically observed in SiO2 deposition from tetraethylorthosilicate (TEOS).
- Keywords
- SILICON DIOXIDE; TETRAETHOXYSILANE; SIMULATION; PRESSURE; FILMS; TETRAETHYLORTHOSILICATE; MECHANISMS; PYROLYSIS; QUALITY; OZONE; SILICON DIOXIDE; TETRAETHOXYSILANE; SIMULATION; PRESSURE; FILMS; TETRAETHYLORTHOSILICATE; MECHANISMS; PYROLYSIS; QUALITY; OZONE; CVD; TEOS; SiO2; surface
- ISSN
- 0884-2914
- URI
- https://pubs.kist.re.kr/handle/201004/142162
- DOI
- 10.1557/JMR.1999.0318
- Appears in Collections:
- KIST Article > Others
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.