Exploring the Anti-Osteoporotic Effects of n-Hexane Fraction from Cotoneaster wilsonii Nakai: Activation of Runx2 and Osteoblast Differentiation In Vivo

Authors
Hong, SoyeonLee, Hee JuJung, Da SeulErdenebileg SaruulHwang, Ho SeongKwon, Hak CheolKwon, JaeyoungYoo, GyHye
Issue Date
2025-01
Publisher
Multidisciplinary Digital Publishing Institute (MDPI)
Citation
Pharmaceuticals, v.18, no.1
Abstract
Background: Osteoporosis is characterized by the microstructural depletion of bone tissue and decreased bone density, leading to an increased risk of fractures. Cotoneaster wilsonii Nakai, an endemic species of the Korean Peninsula, grows wild in Ulleungdo. In this study, we aimed to investigate the effects of C. wilsonii and its components on osteoporosis. Methods and Results: The alkaline phosphatase (ALP) activity of C. wilsonii extracts and fractions was evaluated in MC3T3-E1 pre-osteoblasts, and the n-hexane fraction (CWH) showed the best properties for ALP activity. The effects of the CWH on bone formation were assessed in MC3T3-E1 cells and ovariectomized mice. Biochemical assays and histological analyses focused on the signaling activation of osteoblast differentiation and osteogenic markers, such as ALP, collagen, and osterix. The CWH significantly activated TGF-β and Wnt signaling, enhancing osteoblast differentiation and bone matrix formation. Notably, CWH treatment improved micro-CT indices, such as femoral bone density, and restored serum osteocalcin levels compared to OVX controls. Conclusions: These results highlight the potential of the C. wilsonii Nakai n-hexane fraction as a promising therapeutic agent for managing osteoporosis.
URI
https://pubs.kist.re.kr/handle/201004/151546
DOI
10.3390/ph18010045
Appears in Collections:
KIST Article > Others
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE