Prototype-Guided Saliency Feature Learning for Person Search
- Authors
- Hanjae Kim; Sunghun Joung; KIM, IG JAE; Kwanghoon Sohn
- Issue Date
- 2021-06
- Publisher
- IEEE COMPUTER SOC
- Citation
- CVPR, IEEE conf. on Computer Vision and Pattern Recognition, pp.4863 - 4872
- Abstract
- Existing person search methods integrate person detection and re-identification (re-ID) module into a unified system. Though promising results have been achieved, the misalignment problem, which commonly occurs in person search, limits the discriminative feature representation for re-ID. To overcome this
imitation, we introduce a novel framework to learn the discriminative representation by utilizing prototype in OIM loss. Unlike conventional methods using prototype as a representation of person identity, we utilize it as guidance to allow the attention network to consistently highlight multiple instances across different poses. Moreover, we propose a new prototype update scheme with adaptive momentum to increase the discriminative ability across different instances. Extensive ablation experiments demonstrate that our method can significantly enhance the feature discriminative power, outperforming the state-ofthe-art results on two person search benchmarks including CUHK-SYSU and PRW.
- Keywords
- 재식별; 사람 추적; Saliency
- ISSN
- 1063-6919
- URI
- https://pubs.kist.re.kr/handle/201004/77404
- DOI
- 10.1109/CVPR46437.2021.00483
- Appears in Collections:
- KIST Conference Paper > 2021
- Files in This Item:
There are no files associated with this item.
- Export
- RIS (EndNote)
- XLS (Excel)
- XML
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.